Question:
In the given figure, DE || BD. Determine AC and AE.
Solution:
Given, $D E \| C B$.
In $\triangle A B C$ and $\triangle A D E$
$\angle A D E=\angle C \quad$ (Corresponding angles)
$\angle A=\angle A \quad$ (Common)
$\triangle A B C \sim \triangle A D E \quad$ (A.A Similarity)
$\frac{A E}{4}=\frac{12}{15}=\frac{14}{A C}$
$\frac{A E}{4}=\frac{12}{15}$
$A E \times 15=12 \times 4$
$4 E=\frac{12 \times 4}{15}$
$A E=\frac{4 \times 4}{5}$
$A E=\frac{16}{5}$
$\frac{A E}{4}=\frac{12}{15}=\frac{14}{A C}$
$\frac{12}{15}=\frac{14}{A C}$
$12 \times A C=14 \times 15$
$A C=\frac{14 \times 15}{12}$
$A C=\frac{35}{2}$
Hence the value of $A C$ and $A E$ is $\frac{35}{2}$ and $\frac{16}{5}$