Question:
In the given figure, DB ⊥ BC, DE ⊥ AB and AC ⊥ BC.
Prove that $\frac{B E}{D E}=\frac{A C}{B C}$.
Solution:
In $\triangle B E D$ and $\triangle A C B$, we have:
$\angle B E D=\angle A C B=90^{\circ}$
$\because \angle B+\angle C=180^{\circ}$
$\therefore B D \| A C$
$\angle E B D=\angle C A B$ (Alternate angles)
Therefore, by AA similarity theorem, we get:
$\triangle B E D \sim \triangle A C B$
$\Rightarrow \frac{B E}{A C}=\frac{D E}{B C}$
$\Rightarrow \frac{B E}{D E}=\frac{A C}{B C}$
This completes the proof.