In the given figure, $\mathrm{D}$ is the mid-point of side $\mathrm{BC}$ and $\mathrm{AE} \perp \mathrm{BC}$. If $\mathrm{BC}=\mathrm{a}, \mathrm{AC}=b, \mathrm{AB}=c, \mathrm{ED}=x, \mathrm{AD}=p$ and $\mathrm{AE}=h$, prove that :
(i) $b^{2}=p^{2}+a x+\frac{a^{2}}{4}$
(ii) $c^{2}=p^{2}-a x+\frac{a^{2}}{4}$
(iii) $b^{2}+c^{2}=2 p^{2}+\frac{a^{2}}{2}$
(i) It is given that $\mathrm{D}$ is the midpoint of $\mathrm{BC}$ and $B C=a$.
Therefore, $B D=D C=\frac{a}{2}$...(1)
Using Pythagoras theorem in the right angled triangle AED,
$A D^{2}=A E^{2}+E D^{2}$....(2)
Let us substitute $A D=p, A E=h$ and $E D=x$ in equation (2), we get
$p^{2}=h^{2}+x^{2}$
Let us take another right angled triangle that is triangle AEC.
Using Pythagoras theorem,
$A C^{2}=A E^{2}+E C^{2}$...$.(3)$
Let us substitute $A E=h$ and $E C=x+\frac{a}{2}$ in equation (3) we get,
Here we know that $D C=\frac{a}{2}$ and $E D=x$.
$E C=E D+D C$
Substituting $A C=b, D C=\frac{a}{2}$ and $E D=x$ we get $E C=\left(x+\frac{a}{2}\right)$
$b^{2}=h^{2}+\left(x+\frac{a}{2}\right)^{2}$
$b^{2}=h^{2}+x^{2}+x a+\frac{a^{2}}{4}$....(4)
From equation (1) we can substitute $h^{2}+x^{2}=p^{2}$ in equation (4),
$b^{2}=h^{2}+x^{2}+x a+\frac{a^{2}}{4}$...(5)
(ii) Using Pythagoras theorem in right angled triangle AEB,
$A B^{2}=A E^{2}+B E^{2}$....$(6)$
We know that AB = c and AE = h now we will find BE.
$B D=B E+E D$
Therefore, $B E=B D-E D$
We know that $B D=\frac{a}{2}$ and $E D=x$ substituting these values in $B E=B D-E D$ we get,
$B E=\frac{a}{2}-x$
Now we will substitute $\mathrm{AB}=\mathrm{c}, \mathrm{AE}=\mathrm{h}$ and $B E=\frac{a}{2}-x$ in equation (6) we get,
$c^{2}=h^{2}+\left(\frac{a}{2}-x\right)^{2}$
$c^{2}=h^{2}+\frac{a^{2}}{4}-a x+x^{2}$....(7)
Let us rewrite the equation (7) as below,
$c^{2}=h^{2}+x^{2}+\frac{a^{2}}{4}-a x$.....(8)
From equation (1) we can substitute $h^{2}+x^{2}=p^{2}$ in equation (8),
$c^{2}=p^{2}+\frac{a^{2}}{4}-a x$
$c^{2}=p^{2}-a x+\frac{a^{2}}{4}$....(9)
(iii) Now we will add equations $(5)$ and $(9)$ as shown below,
$b^{2}+c^{2}-p^{2}+x a+\frac{a^{2}}{4}+p^{2}-a x+\frac{a^{2}}{4}$
$b^{2}+c^{2}=p^{2}+\frac{a^{2}}{4}+p^{2}+\frac{a^{2}}{4}$
$b^{2}+c^{2}=2 p^{2}+\frac{a^{2}}{2}$
Therefore, $b^{2}+c^{2}-2 p^{2}+\frac{a^{2}}{2}$.