In the given figure, AD divides ∠BAC in the ratio 1 : 3 and AD = DB. Determine the value of x.
$\angle B A C+\angle C A E=180^{\circ} \quad[\because B E$ is a straight line $]$
$\Rightarrow \angle B A C+108^{\circ}=180^{\circ}$
$\Rightarrow \angle B A C=72^{\circ}$
Now, divide $72^{\circ}$ in the ratio $1: 3$.
$\therefore a+3 a=72^{\circ}$
$\Rightarrow a=18^{\circ}$
$\therefore a=18^{\circ}$ and $3 a=54^{\circ}$
Hence, the angles are $18^{\circ}$ and $54^{\circ}$
$\therefore \angle B A D=18^{\circ}$ and $\angle D A C=54^{\circ}$
Given,
$A D=D B$
$\Rightarrow \angle D A B=\angle D B A=18^{\circ}$
In $\Delta A B C$, we have:
$\angle B A C+\angle A B C+\angle A C B=180^{\circ} \quad$ [Sum of the angles of a triangle]
$\Rightarrow 72^{\circ}+18^{\circ}+x^{\circ}=180^{\circ}$
$\Rightarrow x^{\circ}=90^{\circ}$
$\therefore x=90$