Question:
In the given figure ABCD is a quadrilateral in which ∠ABC = 90°, ∠BDC = 90°, AC = 17 cm, BC = 15 cm, BD = 12 cm and CD = 9 cm. The area of quad. ABCD is
(a) 102 cm2
(b) 114 cm2
(c) 95 cm2
(d) 57 cm2
Solution:
(b) 114 sq cm
Using Pythagoras' theorem in $\triangle A B C$, we get:
$A C^{2}=A B^{2}+B C^{2}$
$\Rightarrow A B=\sqrt{A C^{2}-B C^{2}}$
$=\sqrt{17^{2}-15^{2}}$
$=8 \mathrm{~cm}$
Area of $\Delta A B C=\frac{1}{2} \times A B \times B C$
$=\frac{1}{2} \times 8 \times 15$
$=60 \mathrm{~cm}^{2}$
Area of $\Delta B C D=\frac{1}{2} \times B D \times C D$
$=\frac{1}{2} \times 12 \times 9$
$=54 \mathrm{~cm}^{2}$
$\therefore$ Area of quadrilateral $A B C D=\operatorname{Ar}(\Delta A B C)+\operatorname{Ar}(\Delta B C D)=54+60=114 \mathrm{~cm}^{2}$