Question.
In the given figure, ABC and ABD are two triangles on the same base AB. If line-segment CD is bisected by AB at O, show that ar (ABC) = ar (ABD).
Solution:
Consider ΔACD.
Line-segment CD is bisected by AB at O. Therefore, AO is the median of
$\triangle \mathrm{ACD}$
$\therefore$ Area $(\Delta \mathrm{ACO})=$ Area $(\triangle \mathrm{ADO}) \ldots$(1)
Considering $\triangle B C D, B O$ is the median.
$\therefore$ Area $(\Delta \mathrm{BCO})=$ Area $(\Delta \mathrm{BDO}) \ldots(2)$
Adding equations (1) and (2), we obtain
Area $(\Delta \mathrm{ACO})+$ Area $(\Delta \mathrm{BCO})=$ Area $(\triangle \mathrm{ADO})+$ Area $(\triangle \mathrm{BDO})$
$\Rightarrow$ Area $(\triangle \mathrm{ABC})=$ Area $(\triangle \mathrm{ABD})$
Consider ΔACD.
Line-segment CD is bisected by AB at O. Therefore, AO is the median of
$\triangle \mathrm{ACD}$
$\therefore$ Area $(\Delta \mathrm{ACO})=$ Area $(\triangle \mathrm{ADO}) \ldots$(1)
Considering $\triangle B C D, B O$ is the median.
$\therefore$ Area $(\Delta \mathrm{BCO})=$ Area $(\Delta \mathrm{BDO}) \ldots(2)$
Adding equations (1) and (2), we obtain
Area $(\Delta \mathrm{ACO})+$ Area $(\Delta \mathrm{BCO})=$ Area $(\triangle \mathrm{ADO})+$ Area $(\triangle \mathrm{BDO})$
$\Rightarrow$ Area $(\triangle \mathrm{ABC})=$ Area $(\triangle \mathrm{ABD})$