Question:
In the given figure, AB || CD. If ∠BAO = 60° and ∠OCD = 110°, then ∠AOC = ?
(a) 70°
(b) 60°
(c) 50°
(d) 40°
Solution:
(c) 50°
Draw $E O F\|A B\| C D$.
Now, $E O \| A B$ and $O A$ is the transversal.
$\therefore \angle E O A=\angle O A B=60^{\circ} \quad$ [Alternate Interior Angles]
Also,
$O F \| C D$ and $O C$ is the transversal.
$\therefore \angle C O F+\angle O C D=180^{\circ} \quad$ [Angles on the same side of a transversal line are supplementary]
$\Rightarrow \angle C O F+110^{\circ}=180^{\circ}$
$\Rightarrow \angle C O F=70^{\circ}$
Now,
$\angle E O A+\angle A O C+\angle C O F=180^{\circ} \quad[\because E O F$ is a straight line $]$
$\Rightarrow 60^{\circ}+\angle A O C+70^{\circ}=180^{\circ}$
$\Rightarrow \angle A O C=\mathbf{5 0}^{\circ}$