In the given figure, AB || CD. Find the values of x, y and z.
$A B \| C D$ and let EF and EG be the transversals.
Now, $A B \| C D$ and EF is the transversal.
Then,
$\angle A E F=\angle E F G \quad$ [Alternate Angles]
$\Rightarrow y=75^{\circ}$
$\Rightarrow y=75$
Also,
$\angle E F C+\angle E F D=180^{\circ} \quad$ [Since CFD is a straight line]
$\Rightarrow x+y=180$
$\Rightarrow x+75=180$
$\Rightarrow x=105$
And,
$\angle E G F+\angle E G D=180^{\circ} \quad[$ Since CFGD is a straight line $]$
$\Rightarrow \angle E G F+125=180$
$\Rightarrow \angle E G F=55^{\circ}$
We know that the sum of angles of a triangle is $180^{\circ}$
$\angle E F G+\angle G E F+\angle E G F=180^{\circ}$
$\Rightarrow y+z+55=180$
$\Rightarrow 75+z+55=180$
$\Rightarrow z=50$
$\therefore x=\mathbf{1 0 5}, y=\mathbf{7 5}$ and $z=\mathbf{5 0}$