In the following figure, the area of the segment PAQ is
(a) $\frac{a^{2}}{4}(\pi+2)$
(b) $\frac{a^{2}}{4}(\pi-2)$
(c) $\frac{a^{2}}{4}(\pi-1)$
(d) $\frac{a^{2}}{4}(\pi+1)$
We have to find area of segment PAQ.
Area of the $\mathrm{PAQ}$ segment $=\left(\frac{\pi \theta}{360}-\sin \frac{\theta}{2} \cos \frac{\theta}{2}\right) r^{2}$
We know that $\theta=90^{\circ}$.
Substituting the values we get,
Area of the PAQ segment $=\left(\frac{\pi \times 90}{360}-\sin 45 \cos 45\right) a^{2}$
$\therefore$ Area of the PAQ segment $=\left(\frac{\pi}{4}-\sin 45 \cos 45\right) a^{2}$
Substituting $\sin 45=\frac{1}{\sqrt{2}}$ and $\cos 45=\frac{1}{\sqrt{2}}$ we get,
Area of the PAQ segment $=\left(\frac{\pi}{4}-\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}\right) a^{2}$
$\therefore$ Area of the PAQ segment $=\left(\frac{\pi}{4}-\frac{1}{2}\right) a^{2}$
Now we will make the denominator same.
$\therefore$ Area of the PAQ segment $=\left(\frac{\pi}{4}-\frac{2}{4}\right) a^{2}$
$\therefore$ Area of the PAQ segment $=\left(\frac{\pi-2}{4}\right) a^{2}$
$\therefore$ Area of the PAQ segment $=(\pi-2) \frac{a^{2}}{4}$
$\therefore$ Area of the PAQ segment $=\frac{a^{2}}{4}(\pi-2)$
Therefore, area of the segment PAQ is $\frac{a^{2}}{4}(\pi-2)$.
Hence, the correct answer is option (b).