In the following figure, shows the cross-section of railway tunnel. The radius OA of the circular part is 2 m. If ∠AOB = 90°, calculate:
(i) the height of the tunnel
(ii) the perimeter of the cross-section
(iii) the area of the cross-section.
We have a cross section of a railway tunnel. is a right angled isosceles triangle, right angled at O. let OM be perpendicular to AB.
(i) We have to find the height of the tunnel. We have,
$\mathrm{OA}=2 \mathrm{~m}$
Use Pythagoras theorem in $\triangle \mathrm{OAB}$ to get,
$\mathrm{AB}=\left(\sqrt{2^{2}+2^{2}}\right) \mathrm{m}$
$=2 \sqrt{2} \mathrm{~m}$
Let the height of the tunnel be h. So,
Area of $\Delta \mathrm{OAB}=\frac{1}{2}(2)(2)$
$\frac{1}{2}(2 \sqrt{2})(\mathrm{OM})=2$
Thus,
$\mathrm{OM}=\sqrt{2} \mathrm{~m}$
Therefore,
$h=(2+\sqrt{2}) \mathrm{m}$
(ii)
Perimeter of cross-section is,
$=$ Major are $\mathrm{AB}+\mathrm{AB}$
$=2(\pi)(2)\left(\frac{3}{4}\right)+2 \sqrt{2}$
$=(3 \pi+2 \sqrt{2}) m$
(iii)
Area of cross section,
$=\frac{3}{4}($ Area of circle $)+$ Area of $\triangle \mathrm{OAB}$
$=(\pi)(2)^{2}\left(\frac{3}{4}\right)+\frac{1}{2}(2)(2)$
$(3 \pi+2) m^{2}$