In the following figure, shows a sector of a circle, centre O, containing an angle 0°. Prove that:
(i) Perimeter of the shaded region is $\left(\tan \theta+\sec \theta+\frac{\pi \theta}{180}-1\right)$
(ii) Area of the shaded region is $\frac{r^{2}}{2}\left(\tan \theta-\frac{\pi \theta}{180}\right)$
It is given that the radius of circle is $r$ and the angle $\angle A O C=\theta^{\circ}$.
In $\triangle A O B$
It is given that $O A=r$.
$\cos \theta=\frac{O A}{O B}$
$O B=\frac{O A}{\cos \theta}$
$O B=r \sec \theta$
$\tan \theta=\frac{A B}{O A}$
$A B=O A \tan \theta$
$A B=r \tan \theta$
(i) We know that the arc length l of a sector of an angle θ in a circle of radius r is
$l=\frac{\theta}{360^{\circ}} \times 2 \pi r$
Perimeter of sector $A O C=O C+O A+\operatorname{arc}$ length $A B$
Now we substitute the value of OC, OA and l to find the perimeter of sector AOC,
Perimeter of sector $A O C=r+r+\frac{\theta}{360^{\circ}} \times 2 \pi r$
$=2 r+\frac{\theta}{180^{\circ}} \times \pi r$
Perimeter of $\triangle A O B=O B+O A+A B$
$=r \sec \theta+r+r \tan \theta$
$=r(\sec \theta+\tan \theta+1)$
Perimeter of shaded region $A B C=$ Perimeter of $\triangle A O B$ - Perimeter of sector $A O C$
$=r(\sec \theta+\tan \theta+1)-2 r-\frac{\theta}{180^{\circ}} \times \pi r$
$=r\left(\sec \theta+\tan \theta-\frac{\pi \theta}{180^{\circ}}-1\right)$
Hence, Perimeter of shaded region $A B C=r\left(\sec \theta+\tan \theta-\frac{\pi \theta}{180^{\circ}}-1\right)$
(ii) We know that area $A$ of the sector at an angle $\theta$ in the circle of radius $r$ is
$A=\frac{\theta}{360^{\circ}} \times \pi r^{2}$
Thus
Area of sector $A O C=\frac{\theta}{360^{\circ}} \pi r^{2}$
Area of $\triangle A O B=\frac{1}{2} \times O A \times A B$
$=\frac{1}{2} \times r \times r \tan \theta$
$=\frac{1}{2} \times r^{2} \tan \theta$
Area of shaded region $A B C=$ Area of $\triangle A O B$ - Area of sector $A O C$
$=\frac{1}{2} r^{2} \tan \theta-\frac{\theta}{360^{\circ}} \times \pi r^{2}$
$=\frac{r^{2}}{2}\left(\tan \theta-\frac{\pi \theta}{180^{\circ}}\right)$
Hence, Area of shaded region $A B C=\frac{r^{2}}{2}\left(\tan \theta-\frac{\pi \theta}{180^{\circ}}\right)$