Solution:
From the figure, it can be observed that
$\mathrm{AC}=\mathrm{AB}+\mathrm{BC}$
$B D=B C+C D$
It is given that $A C=B D$
$\mathrm{AB}+\mathrm{BC}=\mathrm{BC}+\mathrm{CD}$(1)
According to Euclid’s axiom, when equals are subtracted from equals, the remainders are also equal.
Subtracting BC from equation (1), we obtain
$\mathrm{AB}+\mathrm{BC}-\mathrm{BC}=\mathrm{BC}+\mathrm{CD}-\mathrm{BC}$
$\mathrm{AB}=\mathrm{CD}$