In the following equations, find which variables x, y, z etc. represent rational or irrational numbers:
(i) $x^{2}=5$
(ii) $y^{2}=9$
(iii) $z^{2}=0.04$
(iv) $u^{2}=\frac{17}{4}$
(v) $v^{2}=3$
(vi) $w^{2}=27$
(vii) $t^{2}=0.4$
(i) Given that $x^{2}=5$
Now we have to find the value of x
Since $x^{2}=5$
$\Rightarrow x=\sqrt{5}$
So it x is an irrational number
(ii) Given that $y^{2}=9$
Now we have to find the value of y
$y^{2}=9$
$\Rightarrow y=\sqrt{9}$
$\Rightarrow y=3$
So y is a rational number
(iii) Given that $z^{2}=0.04$
Now we have to find the value of z
$\Rightarrow z^{2}=\frac{4}{100}$
$\Rightarrow z=\sqrt{\frac{4}{100}}$
$\Rightarrow z=\frac{2}{10}$
$\Rightarrow z=\frac{1}{5}$
So it is rational number
(iv) Given that $u^{2}=\frac{17}{4}$
Now we have to find the value of u
$u^{2}=\frac{17}{4}$
$\Rightarrow u=\sqrt{\frac{17}{4}}$
$\Rightarrow u=\frac{\sqrt{17}}{2}$
So it is an irrational number
(v) Given that $v^{2}=3$
Now we have to find the value of v
$v^{2}=3$
$\Rightarrow v=\sqrt{3}$
So it is an irrational number
(vi) Given that $w^{2}=27$
Now we have to find the value of w
$\Rightarrow w=\sqrt{27}$
$\Rightarrow w=\sqrt{3 \times 3 \times 3}$
$\Rightarrow w=3 \sqrt{3}$
So it is an irrational number
(vii) Given that $t^{2}=0.4$
Now we have to find the value of t
$\Rightarrow t=\sqrt{0.4}$
$\Rightarrow t=\sqrt{\frac{4}{10}}$
$\Rightarrow t=\frac{2}{\sqrt{10}}$
So it is an irrational number