Question:
In the circle given below, let $\mathrm{OA}=1$ unit, $\mathrm{OB}=13$ unit and $\mathrm{PQ} \perp \mathrm{OB}$. Then, the area of the triangle PQB (in square units) is
Correct Option: , 2
Solution:
$\mathrm{PA}=\mathrm{AQ}=\lambda$
$\mathrm{OA} \cdot \mathrm{AB}$
$=\mathrm{AP} \cdot \mathrm{AQ}$.3
$\Rightarrow 1.12=\lambda . \lambda$
$\Rightarrow \lambda=2 \sqrt{3}$
Area $\triangle \mathrm{PQB}=\frac{1}{2} \times 2 \lambda \times \mathrm{AB}$
$\Delta=\frac{1}{2} \cdot 4 \sqrt{3} \times 12$
$=24 \sqrt{3}$