Question:
In the adjacent figure, the bisectors of ∠A and ∠B meet in a point P. If ∠C = 100° and ∠D = 60°, find the measure of ∠APB.
Solution:
Sum of the angles of a quadrilateral is 360°.
$\therefore \angle A+\angle B+60^{\circ}+100^{\circ}=360^{\circ}$
$\angle A+\angle B=360-100-60=200^{\circ}$
or
$\frac{1}{2}(\angle A+\angle B)=100^{\circ} \quad \ldots(1)$
Sum of the angles of a triangle is $180^{\circ}$.
In $\triangle A P B$ :
$\frac{1}{2}(\angle A+\angle B)+\angle P=180^{\circ} \quad$ (because $A P$ and $P B$ are bisectors of $\angle A$ and $\angle B$ )
$U$ sing equation (1):
$100^{\circ}+\angle P=180^{\circ}$
$\Rightarrow \angle P=80^{\circ}$
$\therefore \angle A P B=80^{\circ}$