In right-angled triangle $\mathrm{ABC}$ is which $\angle \mathrm{C}=90^{\circ}$, if $\mathrm{D}$ is the mid-point of $\mathrm{BC}$, prove that $\mathrm{AB}^{2}=4 \mathrm{AD}^{2}-3 \mathrm{AC}^{2}$.
$\triangle \mathrm{ABC}$ is a right-angled triangle with $\angle \mathrm{C}=90^{\circ}$. D is the mid-point of $\mathrm{BC}$.
We need to prove that $A B^{2}=4 A D^{2}-3 A C^{2}$.
Join AD.
Since D is the midpoint of the side BC, we get
BD = DC
$\therefore B C=2 D C$
Using Pythagoras theorem in triangles right angled triangle ABC
$A B^{2}=A C^{2}+B C^{2}$
$A B^{2}=A C^{2}+(2 D C)^{2}$
$A B^{2}=A C^{2}+4 D C^{2}$
Again using Pythagoras theorem in the right angled triangle ADC
$A D^{2}=A C^{2}+D C^{2}$
$D C^{2}=A D^{2}-A C^{2}$....(2)
From (1) and (2), we get
$A B^{2}=A C^{2}+4\left(A D^{2}-A C^{2}\right)$
$A B^{2}=A C^{2}+4 A D^{2}-4 A C^{2}$
$A B^{2}=4 A D^{2}-3 A C^{2}$
Hence, $A B^{2}=4 A D^{2}-3 A C^{2}$.