In ∆PQR, right angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P and sec R.
Given:
$\triangle P Q R$ is right angled at vertex $Q$.
$P Q=4 \mathrm{~cm}$
$R Q=3 \mathrm{~cm}$
To find:
$\sin P, \sin R, \sec P, \sec R$
Given $\triangle P Q R$ is as shown below
Hypotenuse side PR is unknown.
Therefore, we find side $P R$ of $\triangle P Q R$ by Pythagoras theorem
By applying Pythagoras theorem to $\triangle P Q R$
We get,
$P R^{2}=P Q^{2}+R Q^{2}$
Substituting values of sides from the above figure
$P R^{2}=4^{2}+3^{2}$
$P R^{2}=16+9$
$P R^{2}=25$
$P R=\sqrt{25}$
$P R=5$
Hence, Hypotenuse = 5
Now by definition,
$\sin P=\frac{\text { Perpendicular side opposite to } \angle P}{\text { Hypotenuse }}$
$\sin P=\frac{R Q}{P R}$
Substituting values of sides from the above figure
$\sin P=\frac{3}{5}$
Now by definition,
$\sin R=\frac{\text { Perpendicular side opposite to } \angle R}{\text { Hypotenuse }}$
$\sin R=\frac{P Q}{P R}$
Substituting values of sides from the above figure
$\sin R=\frac{4}{5}$
By definition,
$\sec P=\frac{1}{\cos P}$
$\sec P=\frac{1}{\frac{\text { Base side adjacent to } \angle P}{\text { Hypotenuse }}}$
$\sec P=\frac{\text { Hypotenuse }}{\text { Base side adjacent to } \angle P} .$
Substituting values of sides from the above figure
$\sec P=\frac{\mathrm{PR}}{P Q}$
By definition,
$\sec R=\frac{1}{\cos R}$
$\sec R=\frac{1}{\frac{\text { Base side adjacent to } \angle R}{\text { Hypotenuse }}}$
$\sec R=\frac{\text { Hypotenuse }}{\text { Base side adjacent to } \angle R} .$
Substituting values of sides from the above figure
$\sec R=\frac{\mathrm{PR}}{R Q}$
$\sec R=\frac{5}{3}$
Answer: $\sin P=\frac{3}{5}, \sin R=\frac{4}{5}, \sec P=\frac{5}{4}$ and $\sec R=\frac{5}{3}$