In $\triangle P Q R$, right-angled at $Q, P Q=3 \mathrm{~cm}$ and $P R=6 \mathrm{~cm}$. Determine $\angle P$ and $\angle R$.
We are given the following information in the form of triangle
To find: $\angle P$ and $\angle R$
Now, in $\triangle P Q R$
$\cos P=\frac{P Q}{P R}$
$\cos P=\frac{3}{6}$…… (1)
$=\frac{1}{2}$
Now we know that
$\cos 60^{\circ}=\frac{1}{2}$...(2)
Now by comparing equation (1) and (2)
We get,
$\angle P=60^{\circ} \ldots \ldots(3)$
Now we have
$\sin P=\frac{Q R}{P R}$
$\sin 60^{\circ}=\frac{Q R}{6}$
Now we know that
$\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
Therefore,
$\frac{\sqrt{3}}{2}=\frac{Q R}{6}$
Now by cross multiplying
We get,
$6 \times \sqrt{3}=2 \times Q R$
$\Rightarrow 6 \sqrt{3}=2 Q R$
$\Rightarrow Q R=\frac{6 \sqrt{3}}{2}$
$\Rightarrow Q R=3 \sqrt{3}$
Therefore,
$Q R=3 \sqrt{3} \mathrm{~cm}$....(4)
Now we know that
$\cos R=\frac{Q R}{P R}$
$\cos R=\frac{3 \sqrt{3}}{6}$
$\Rightarrow \cos R=\frac{\sqrt{3}}{2}$.....(5)
Now we know,
$\cos 30^{\circ}=\frac{\sqrt{3}}{2} \ldots \ldots$(6)
Now by comparing equation (5) and (6)
We get,
$\angle R=30^{\circ} \ldots \ldots(7)$
Hence from equation (3) and (7)
$\angle P=60^{\circ}$ and $\angle R=30^{\circ}$