In how many ways can a vowel, a consonant and a digit be chosen out of the

Question:

In how many ways can a vowel, a consonant and a digit be chosen out of the 26 letters of the English alphabet and the 10 digits?

 

Solution:

To find: number of ways in which a vowel, a consonant and a digit be chosen out of the 26 letters of the English alphabet and the 10 digits.

e.g.

Way of selecting a vowel from 5 vowels $={ }^{5} C_{1}$

Way of selecting a consonant from 26 consonants $={ }^{21} \mathrm{C}_{1}$

Way of selecting a digit from 10 digits $={ }^{10} \mathrm{C}_{1}$

So ways of choosing a vowel, a consonant, a digit= ${ }^{5} \mathrm{C}_{1} \times{ }^{21} \mathrm{C}_{1} \times{ }^{10} \mathrm{C}_{1}$

$=5 \times 21 \times 10$

$=1050$

 

Leave a comment