Question:
In how many ways can a vowel, a consonant and a digit be chosen out of the 26 letters of the English alphabet and the 10 digits?
Solution:
To find: number of ways in which a vowel, a consonant and a digit be chosen out of the 26 letters of the English alphabet and the 10 digits.
e.g.
Way of selecting a vowel from 5 vowels $={ }^{5} C_{1}$
Way of selecting a consonant from 26 consonants $={ }^{21} \mathrm{C}_{1}$
Way of selecting a digit from 10 digits $={ }^{10} \mathrm{C}_{1}$
So ways of choosing a vowel, a consonant, a digit= ${ }^{5} \mathrm{C}_{1} \times{ }^{21} \mathrm{C}_{1} \times{ }^{10} \mathrm{C}_{1}$
$=5 \times 21 \times 10$
$=1050$