In figure, tangents PQ and PR are drawn to a circle such that ∠RPQ = 30°. A chord RS is drawn parallel to the tangent PQ. Find the ∠RQS.
PQ and PR are two tangents drawn from an external point P.
$\therefore \quad P Q=P R$
[the lengths of tangents drawn from an external point to a circle are equal]
$\Rightarrow \quad \angle P Q R=\angle Q R P$
[angles opposite to equal sides are equal]
Now, in $\triangle P Q R \quad \angle P Q R+\angle Q R P+\angle R P Q=180^{\circ}$
[sum of all interior angles of any triangle is $180^{\circ}$ ]
$\Rightarrow \quad \angle P Q R+\angle P Q R+30^{\circ}=180^{\circ}$
$\Rightarrow \quad 2 \angle P Q R=180^{\circ}-30^{\circ}$
$\Rightarrow \quad \angle P Q R=\frac{180^{\circ}-30^{\circ}}{2}=75^{\circ}$
Since, $S R \| Q P$
$\therefore \quad \angle S R Q=\angle R Q P=75^{\circ} \quad$ [alternate interior angles]
$\begin{array}{lll}\text { Also, } & \angle P Q R=\angle Q S R=75^{\circ} & \text { [by alternate segment theorem] }\end{array}$
$\ln \triangle Q R S$, $\angle Q+\angle R+\angle S=180^{\circ}$
[sum of all interior angles of any triangle is $180^{\circ}$ ]
$\Rightarrow \quad \angle Q=180^{\circ}-\left(75^{\circ}+75^{\circ}\right)$
$=30^{\circ}$
$\therefore \quad \angle R Q S=30^{\circ}$