Question:
In figure, if AOB is a diameter of the circle and AC = BC, then ∠CAB is equal to
(a) 30°
(b) 60°
(c) 90°
(d) 45°
Solution:
(d) We know that, diameter subtends a right angle to the circle.
$\therefore \quad \angle B C A=90^{\circ}$ ....(i)
Given, $A C=B C$
$\Rightarrow$ $\angle A B C=\angle C A B$ ...(ii)
[angles opposite to equal sides are equal]
In $\triangle A B C$, $\quad \angle C A B+\angle A B C+\angle B C A=180^{\circ}$
[by angle sum property of a triangle]
$\Rightarrow \quad \angle C A B+\angle C A B+\angle 90^{\circ}=180^{\circ} \quad$ [from Eqs. (i) and (ii)]
$\Rightarrow \quad 2 \angle C A B=180^{\circ}-90^{\circ}$
$\Rightarrow \quad \angle C A B=\frac{90^{\circ}}{2}$
$\therefore \quad \angle C A B=45^{\circ}$