Question:
In figure, ABCD is a parallelogram. O is any point on AC. PQ ∥ AB and LM ∥ AD. Prove that: ar(∥ gm DLOP) = ar(∥gm BMOQ).
Solution:
Since a diagonal of a parallelogram divides it into two triangles of equal area
Therefore, ar(ΔADC) = ar(ΔABC)
⇒ ar(ΔAPO) + ar(∥gm DLOP) + ar(ΔOLC)
⇒ ar(ΔAOM) + ar(∥gm BMOQ) + ar(ΔOQC) ... (1)
Since AO and Oc are diagonals of parallelograms AMOP and OQCL respectively.
∴ ar(ΔAPO) = ar(ΔAMO) .... (2)
And ar(ΔOLC) = ar(ΔOQC) .... (3)
Subtracting 2 and 3 from 1, we get
ar(∥gm DLOP) = ar(∥gm BMOQ).