In Figure, ABCD is a parallelogram in which P is the mid-point of DC and Q is a point on AC such that CQ = (1/2) AC.

Question:

In Figure, ABCD is a parallelogram in which P is the mid-point of DC and Q is a point on AC such that CQ = (1/2) AC. If PQ produced meets BC at R, prove that R is a mid-point of BC.

 

Solution:

Join B and D.

Suppose AC and BD intersect at O.

Then OC = (1/2) AC

Now,

CQ = (1/4) AC

⇒ CQ = 1/2((1/2) AC)

= (1/2) OC

In ΔDCO, P and Q are mid points of DC and OC respectively.

∴ PQ ∥ DO

Also in ΔCOB, Q is the mid-point of OC and QR ∥ OB

Therefore, R is the mid-point of BC.

 

Leave a comment