In figure, a square of diagonal 8 cm is inscribed in a circle. Find the area of the shaded region.
Let the side of a square be a and the radius of circle be r.
Given that, length of diagonal of square = 8 cm
$\Rightarrow \quad a \sqrt{2}=8$
$\Rightarrow \quad a=4 \sqrt{2} \mathrm{~cm}$
Now,
Diagonal of a square = Diameter of a circle
$\Rightarrow \quad$ Diameter of circle $=8$
$\Rightarrow$ Radius of circle $=r=\frac{\text { Diameter }}{2}$
$\Rightarrow$ $r=\frac{8}{2}=4 \mathrm{~cm}$
$\therefore$ Area of circle $=\pi r^{2}=\pi(4)^{2}$
$=16 \pi \times \mathrm{cm}^{2}$
and
Area of square $=a^{2}=(4 \sqrt{2})^{2}$
$=32 \mathrm{~cm}^{2}$
So, the area of the shaded region = Area of circle – Area of square
= (16π – 32) cm2
Hence, the required area of the shaded region is (16π – 32) cm2.