Question:
In Figure 5, ∆ABC is right angled at B, BC = 7 cm and AC − AB = 1 cm. Find the value of cos A − sin A.
Solution:
It is given that is right angled at B, BC = 7 cm and AC − AB = 1 cm then we have to find the value of
The following diagram is given
AC − AB = 1…… (1)
Now, apply the Pythagoras theorem in, we get
$A C^{2}=A B^{2}+B C^{2}$
$\Rightarrow \quad A C^{2}-A B^{2}=B C^{2}$
$\Rightarrow(A C-A B)(A C+A B)=7^{2}$
$\Rightarrow \quad A C+A B=9$..........(2)
Now add the equation (1) and (2), we get
$2 A C=50$
$\Rightarrow A C=25$
Put the value of in equation (2), we have
$25+A B=49$
$\Rightarrow A B=24$
Now,
$\cos A-\sin A=\frac{A B}{A C}-\frac{B C}{A C}$
$=\frac{24}{25}-\frac{7}{25}$
$=\frac{17}{25}$
Hence $\cos A-\sin A=\frac{17}{25}$