In Fig. 17.29, suppose it is known that DE = DF. Then, is ΔABC isosceles? Why or why not?
In $\Delta$ FDE :
DE $=$ DF
$\therefore \angle \mathrm{FED}=\angle \mathrm{DFE} \ldots \ldots \ldots \ldots$ (i) (angles opposite to equal sides)
In the IIg BDEF :
$\angle \mathrm{FBD}=\angle \mathrm{FED} \ldots \ldots$ (ii) (opposite angles of a parallelogram are equal)
In the II $^{\mathrm{gm}}$ DCEF:
$\angle \mathrm{DCE}=\angle \mathrm{DFE} \ldots$... (iii) (opposite angles of a parallelogram are equal)
From equations (i), (ii) and (iii):
$\angle \mathrm{FBD}=\angle \mathrm{DCE}$
In $\triangle \mathrm{ABC}:$
If $\angle \mathrm{FBD}=\angle \mathrm{DCE}$, then $\mathrm{AB}=\mathrm{AC}$ (sides opposite to equal angles).
Hence, $\triangle \mathrm{ABC}$ is isosceles.