Question:
In Fig. 16.21, the bisectors of ∠A and ∠B meet at a point P. If ∠C = 100° and ∠D = 50°, find the measure of ∠APB.
Solution:
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}+100^{\circ}+50^{\circ}=360^{\circ}$
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}=210^{\circ} \quad \ldots(\mathrm{i})$
In $\triangle \mathrm{APB}$, we have $:$
$\frac{1}{2} \angle \mathrm{A}+\frac{1}{2} \angle \mathrm{B}+\angle \mathrm{APB}=180^{\circ}$
$\Rightarrow \angle \mathrm{APB}=180^{\circ}-\frac{1}{2}(\angle \mathrm{A}+\angle \mathrm{B})$
From (i), we get:
$\Rightarrow \angle \mathrm{APB}=180^{\circ}-\left(\frac{1}{2} \times 210^{\circ}\right)$
$\therefore \angle \mathrm{APB}=75^{\circ}$