Question:
In each of the following two polynomials, find the value of a, if (x + a) is a factor:
1. $x^{3}+a x^{2}-2 x+a+4$
2. $x^{4}-a^{2} x^{2}+3 x-a$
Solution:
1. $x^{3}+a x^{2}-2 x+a+4$
let, $f(x)=x^{3}+a x^{2}-2 x+a+4$
here, x + a = 0
⟹ x = - a
Substitute the value of x in f(x)
$f(-a)=(-a)^{3}+a(-a)^{2}-2(-a)+a+4$
$=(-a)^{3}+a^{3}-2(-a)+a+4$
= 3a + 4
Equate to zero
⟹ 3a + 4 = 0
⟹ 3a = -4
⟹ a = − 4/3
So, when (x + a) is a factor of f(x) then a = −4/3
2. $x^{4}-a^{2} x^{2}+3 x-a$
let, $f(x)=x^{4}-a^{2} x^{2}+3 x-a$
here, x + a = 0
⟹ x = - a
Substitute the value of x in f(x)
$f(-a)=(-a)^{4}-a^{2}(-a)^{2}+3(-a)-a$
$=a^{4}-a^{4}-3(a)-a$
= -4a
Equate to zero
⟹ -4a = 0
⟹ a = 0
So, when (x + a) is a factor of f(x) then a = 0