In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
(i) If x ∈ A and A ∈ B, then x ∈ B
(ii) If A ⊂ B and B ∈ C, then A ∈ C
(iii) If A ⊂ B and B ⊂ C, then A ⊂ C
(iv) If A ⊄ B and B ⊄ C, then A ⊄ C
(v) If x ∈ A and A ⊄ B, then x ∈ B
(vi) If A ⊂ B and x ∉ B, then x ∉ A
(i) False
Let A = {1, 2} and B = {1, {1, 2}, {3}}
Now, $2 \in\{1,2\}$ and $\{1,2\} \in\{\{3\}, 1,\{1,2\}\}$
$\therefore A \in B$
However, $2 \notin\{\{3\}, 1,\{1,2\}\}$
(ii) False
Let $\mathrm{A}=\{2\}, \mathrm{B}=\{0,2\}$, and $\mathrm{C}=\{1,\{0,2\}, 3\}$
As A ⊂ B
B ∈ C
However, $\mathrm{A} \notin \mathrm{C}$
(iii) True
Let A ⊂ B and B ⊂ C.
Let x ∈ A
$\Rightarrow x \in \mathrm{B} \quad[\because \mathrm{A} \subset \mathrm{B}]$
$\Rightarrow x \in \mathrm{C} \quad[\because \mathrm{B} \subset \mathrm{C}]$
∴ A ⊂ C
(iv) False
Let $\mathrm{A}=\{1,2\}, \mathrm{B}=\{0,6,8\}$, and $\mathrm{C}=\{0,1,2,6,9\}$
Accordingly, $\mathrm{A} \nsubseteq \mathrm{B}$ and $\mathrm{B} \not \mathrm{C}$.
However, $A \subset C$
(v) False
Let A = {3, 5, 7} and B = {3, 4, 6}
Now, 5 ∈ A and A ⊄ B
However, 5 ∉ B
(vi) True
Let A ⊂ B and x ∉ B.
To show: x ∉ A
If possible, suppose x ∈ A.
Then, x ∈ B, which is a contradiction as x ∉ B
∴x ∉ A