In each of the figures given below, an altitude is drawn to the hypotenuse by a right-angled triangle.
In each of the figures given below, an altitude is drawn to the hypotenuse by a right-angled triangle. The length of different line-segment are marked in each figure. Determine x, y, z in each case.
(i) $\triangle A B C$ is right angled triangle right angled at $B$
$A B^{2}+B C^{2}=A C^{2}$
$x^{2}+z^{2}=(4+5)^{2}$
$x^{2}+z^{2}=9^{2}$
$x^{2}+z^{2}=81$......$(i)$
$\triangle B D A$ is right triangle right angled at $\mathrm{D}$
$B D^{2}+A D^{2}=A B^{2}$
$y^{2}+4^{2}=x^{2}$
$y^{2}+16=x^{2}$
$16=x^{2}-y^{2}$...(ii)
$\triangle B D C$ is right triangle right angled at $D$
$B D^{2}+D C^{2}=B C^{2}$
$y^{2}+25=z^{2}$
$25=z^{2}-y^{2}$$\ldots \ldots($ iii $)$
By canceling equation(i) and(ii) by elimination method, we get
y canceling and by elimination method we get
$z^{2}=45$
$z=\sqrt{45}$
$z=\sqrt{3 \times 3 \times 5}$
$z=3 \sqrt{5}$
Now, substituting $z^{2}=45$ in equation (iv) we get
$y^{2}+z^{2}=65$
$y^{2}+45=65$
$y^{2}=65-45$
$y^{2}=20$
$y=\sqrt{20}$
$y=\sqrt{2 \times 2 \times 5}$
$y=2 \sqrt{5}$
Now, substituting $y^{2}=20$ in equation (ii) we get
$x^{2}-y^{2}=16$
$x^{2}-20=16$
$x^{2}=16+20$
$x^{2}=36$
$x=\sqrt{36}$
$x=\sqrt{6 \times 6}$
$x=6$
Hence the values of $x, y, z$ is $6,2 \sqrt{5}, 3 \sqrt{5}$
(ii) $\triangle P Q R$ is a right triangle, right angled at $Q$
$6+z^{2}=(4+x)^{2}$
$36+z^{2}=16+x^{2}+8 x$
$z^{2}-x^{2}-8 x=16-36$
$z^{2}-x^{2}-8 x=-20 \ldots \ldots$ (i)
$\Delta Q S P$ is a right triangle right angled at $S$
$Q S^{2}+P S^{2}=P Q^{2}$
$y^{2}+4^{2}=6^{2}$
$y^{2}+16=36$
$y^{2}=36-16$
$y^{2}=20$
$y=\sqrt{20}$
$y=\sqrt{2 \times 2 \times 5}$
$y=2 \sqrt{5}$
$\triangle Q S R$ is a right triangle right angled at $S$
$Q S^{2}+R S^{2}=Q R^{2}$
$y^{2}+x^{2}=z^{2}$.....(2)
Now substituting $y^{2}+x^{2}=z^{2}$ in equation (i) we get
$y^{2}+x^{2}-x^{2}-8 x=-20$
$y^{2}+x^{2}-x^{2}-8 x=-20$
$y^{2}-8 x=-20$$\ldots \ldots(i i i)$
Now substituting $y^{2}=20$ in equation (iii) we get
$y^{2}-8 x=-20$
$20-8 x=-20$
$-8 x=-20-20$
$-8 x=-40$
$x=\frac{40}{8}$
$x=5$
Now substituting $x=5$ and $y^{2}=20$ in equation (ii) we get
$y^{2}+x^{2}=z^{2}$
$20+5^{2}=z^{2}$
$20+25=z^{2}$
$45=z^{2}$
$\sqrt{3 \times 3 \times 5}=z^{2}$
$3 \sqrt{5}=z$
Hence the value of $x, y$ and $z$ are $5,2 \sqrt{5}, 3 \sqrt{5}$