In any ΔABC, prove that
$\left(c^{2}-a^{2}+b^{2}\right) \tan A=\left(a^{2}-b^{2}+c^{2}\right) \tan B=\left(b^{2}-c^{2}+a^{2}\right) \tan C$
Need to prove: $\left(c^{2}-a^{2}+b^{2}\right) \tan A=\left(a^{2}-b^{2}+c^{2}\right) \tan B=\left(b^{2}-c^{2}+a^{2}\right) \tan C$
We know
$\tan A=\frac{a b c}{R} \frac{1}{b^{2}+c^{2}-a^{2}}-\cdots-\cdots(a)$
Similarly, $\tan B=\frac{a b c}{R} \frac{1}{c^{2}+a^{2}-b^{2}}$ and $\tan C=\frac{a b c}{R} \frac{1}{a^{2}+b^{2}-c^{2}}$
Therefore,
$\left(b^{2}+c^{2}-a^{2}\right) \tan A=\frac{a b c}{R}[$ from $(a)]$
Similarly,
$\left(c^{2}+a^{2}-b^{2}\right) \tan B=\frac{a b c}{R}$ and $\left(a^{2}+b^{2}-c^{2}\right) \tan C=\frac{a b c}{R}$
Hence we can conclude comparing above equations,
$\left(c^{2}-a^{2}+b^{2}\right) \tan A=\left(a^{2}-b^{2}+c^{2}\right) \tan B=\left(b^{2}-c^{2}+a^{2}\right) \tan C$
[Proved]