Question:
In any ΔABC, prove that
$a c \cos B-b c \cos A=\left(a^{2}-b^{2}\right)$
Solution:
Left hand side,
$a c \cos B-b c \cos A$
$=a c \frac{a^{2}+c^{2}-b^{2}}{2 a c}-b c \frac{b^{2}+c^{2}-a^{2}}{2 b c}\left[A s, \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right]$
$=\frac{a^{2}+c^{2}-b^{2}}{2}-\frac{b^{2}+c^{2}-a^{2}}{2}$
$=\frac{a^{2}+c^{2}-b^{2}-b^{2}-c^{2}+a^{2}}{2}$
$=\frac{2\left(a^{2}-b^{2}\right)}{2}$
$=a^{2}-b^{2}$
$=$ Right hand side. [Proved]