Question:
In an AP, if sn = 3n2 + 5n and ak = 164, then find the value of k.
Solution:
$\because n$th term of an AP,
$a_{n}=S_{n}-S_{n-1}$
$=3 n^{2}+5 n-3(n-1)^{2}-5(n-1)$ $\left[\because S_{n}=3 n^{2}+5 n\right.$ (given) $]$
$=3 n^{2}+5 n-3 n^{2}-3+6 n-5 n+5$
$a_{n}=6 n+2$ $\ldots($ i)
or $a_{k}=6 k+2=164$ $\left[\because a_{k}=164\right.$ (given))
$\Rightarrow \quad 6 k=164-2=162$
$\therefore \quad k=27$