In an A.P., the sum of first ten terms is −150 and the sum of its next ten terms is −550. Find the A.P.
Here, we are given and sum of the next ten terms is −550.
Let us take the first term of the A.P. as a and the common difference as d.
So, let us first find a10. For the sum of first 10 terms of this A.P,
First term = a
Last term = a10
So, we know,
$a_{n}=a+(n-1) d$
For the 10th term (n = 10),
$a_{10}=a+(10-1) d$
$=a+9 d$
So, here we can find the sum of the $n$ terms of the given A.P., using the formula, $S_{n}=\left(\frac{n}{2}\right)(a+l)$
Where, a = the first term
l = the last term
So, for the given A.P,
$S_{10}=\left(\frac{10}{2}\right)(a+a+9 d)$
$-150=5(2 a+9 d)$
$-150=10 a+45 d$
$a=\frac{-150-45 d}{10}$ ..(1)
Similarly, for the sum of next 10 terms (S10),
First term = a11
Last term = a20
For the 11th term (n = 11),
$a_{11}=a+(11-1) d$
$=a+10 d$
For the 20th term (n = 20),
$a_{20}=a+(20-1) d$
$=a+19 d$
So, for the given A.P,
$S_{10}=\left(\frac{10}{2}\right)(a+10 d+a+19 d)$
$-550=5(2 a+29 d)$
$-550=10 a+145 d$
$a=\frac{-550-145 d}{10}$ ..........(2)
Now, subtracting (1) from (2),
$a-a=\left(\frac{-550-145 d}{10}\right)-\left(\frac{-150-45 d}{10}\right)$
$0=\frac{-550-145 d+150+45 d}{10}$
$0=-400-100 d$
$100 d=-400$
$d=-4$
Substituting the value of d in (1)
$a=\frac{-150-45(-4)}{10}$
$=\frac{-150+180}{10}$
$=\frac{30}{10}$
$=3$
So, the A.P. is $3,-1,-5,-9, \ldots$ with $a=3, d=-4$.