In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms.
Question:
In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.
Solution:
Given:
$a=2, S_{5}=\frac{1}{4}\left(S_{10}-S_{5}\right)$
We have:
$S_{5}=\frac{5}{2}[2 \times 2+(5-1) d]$
$\Rightarrow S_{5}=5[2+2 d] \ldots(i)$
Also, $S_{10}=\frac{10}{2}[2 \times 2+(10-1) d]$
$\Rightarrow S_{10}=5[4+9 d] \ldots . .(i i)$
$\because S_{5}=\frac{1}{4}\left(S_{10}-S_{5}\right)$
From (i) and (ii), we have:
$\Rightarrow 5[2+2 \mathrm{~d}]=\frac{1}{4}[5(4+9 d)-5(2+2 d)]$
$\Rightarrow 8+8 d=4+9 d-2-2 d$
$\Rightarrow d=-6$
$\therefore a_{20}=a+(20-1) d$
$\Rightarrow a_{20}=a+19 d$
$\Rightarrow a_{20}=2+19(-6)$
$\Rightarrow a_{20}=-112$