Question:
In ∆ABC, prove the following:
$a^{2}=(b+c)^{2}-4 b c \cos ^{2} \frac{A}{2}$
Solution:
RHS $=(b+c)^{2}-4 b c \cos ^{2} \frac{A}{2}$
$=b^{2}+c^{2}+2 b c-4 b c\left(\frac{1+\cos A}{2}\right)$
$=b^{2}+c^{2}+2 b c-2 b c(1+\cos A)$
$=b^{2}+c^{2}+2 b c(1-1-\cos A)$
$=b^{2}+c^{2}-2 b c \cos A$
$=b^{2}+c^{2}-2 b c\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right) \quad\left(\because \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)$
$=b^{2}+c^{2}-b^{2}-c^{2}+a^{2}$
$=a^{2}=\mathrm{LHS}$
Hence proved.