In ∆ABC, prove the following:
$\left(c^{2}-a^{2}+b^{2}\right) \tan A=\left(a^{2}-b^{2}+c^{2}\right) \tan B=\left(b^{2}-c^{2}+a^{2}\right) \tan C$
We know that
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}, \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=k$
So,
$\left(c^{2}-a^{2}+b^{2}\right) \tan A=\left(c^{2}-a^{2}+b^{2}\right) \frac{\sin A}{\cos A}$
$=\left(c^{2}-a^{2}+b^{2}\right) \sin A \frac{2 b c}{b^{2}+c^{2}-a^{2}}$
$=2 b c \sin A$
$=2 k a b c \quad \ldots(1)$
$\left(a^{2}-b^{2}+c^{2}\right) \tan B=\left(a^{2}-b^{2}+c^{2}\right) \frac{\sin B}{\cos B}$
$=\left(a^{2}-b^{2}+c^{2}\right) \sin B \frac{2 a c}{a^{2}+c^{2}-b^{2}}$
$=2 a c \sin B$
$=2 k a b c$ ...(2)
$\left(b^{2}-a^{2}+c^{2}\right) \tan C=\left(b^{2}-a^{2}+c^{2}\right) \frac{\sin C}{\cos C}$
$=\left(b^{2}-c^{2}+a^{2}\right) \sin C \frac{2 a b}{a^{2}+b^{2}-c^{2}}$
$=2 a b \sin C$
$=2 k a b c$ ....(3)
From (1), (2) and (3), we get:
$\left(c^{2}-a^{2}+b^{2}\right) \tan A=\left(a^{2}-b^{2}+c^{2}\right) \tan B=\left(b^{2}-c^{2}+a^{2}\right) \tan C$