In ∆ABC, PQ is a line segment intersecting AB at P and AC at Q such that PQ || BC and PQ divides ∆ABC into two parts equal in area. Find BPAB.
Given: In ΔABC, PQ is a line segment intersecting AB at P, and AC at Q such that PQ || BC and PQ divides ΔABC in two parts equal in area.
To find: $\frac{\mathrm{BP}}{\mathrm{AB}}$
We have PQ $\|$ BC
And
$A r(\triangle \mathrm{APQ})=A r($ quad $\mathrm{BPQC})$
$\operatorname{Ar}(\triangle \mathrm{APQ})+\operatorname{Ar}(\triangle \mathrm{APQ})=\operatorname{Ar}($ quad BPQC $)+\operatorname{Ar}(\triangle \mathrm{APQ})$
$2 A r(\triangle \mathrm{APQ})=A r(\triangle \mathrm{ABC})$.....(1)
Now, PQ || BC and BA is a transversal.
In ΔAPQ and ΔABC,
∠APQ=∠B Corresponding angles
∠PAQ=∠BAC Common
So, ∆APQ~∆ABC (AA Similarity)
We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.
Hence
$\frac{A r(\Delta \mathrm{APQ})}{A r(\Delta \mathrm{ABC})}=\frac{\mathrm{AP}^{2}}{\mathrm{AB}^{2}}$
$\frac{A r(\Delta \mathrm{APQ})}{2 A r(\Delta \mathrm{APQ})}=\frac{\mathrm{AP}^{2}}{\mathrm{AB}^{2}}$
$\frac{1}{2}=\frac{\mathrm{AP}^{2}}{\mathrm{AB}^{2}}$
$\sqrt{\frac{1}{2}}=\frac{\mathrm{AP}}{\mathrm{AB}}$
$A B=\sqrt{2} A P$
$\mathrm{AB}=\sqrt{2}(\mathrm{AB}-\mathrm{BP})$
$\sqrt{2} \mathrm{BP}=\sqrt{2} \mathrm{AB}-\mathrm{AB}$
$\sqrt{2} \mathrm{BP}=(\sqrt{2}-1) \mathrm{AB}$
$\frac{\mathrm{BP}}{\mathrm{AB}}=\frac{(\sqrt{2}-1)}{\sqrt{2}}$