In ΔABC, if ∠A = 40° and ∠B = 60°.

Question:

In ΔABC, if ∠A = 40° and ∠B = 60°. Determine the longest and shortest sides of the triangle.

Solution:

Given that in ΔABC, ∠A = 40° and ∠B = 60°

We have to find longest and shortest side

We know that,

Sum of angles in a triangle 180°

∠A + ∠B + ∠C = 180°

40° + 60° + ∠C = 180°

∠C = 180° - ((10)0°) = 80°

∠C = 80°

Now,

⟹ 40° < 60° < 80° = ∠A < ∠B < ∠C

⟹ ∠C is greater angle and ∠A is smaller angle.

Now, ∠A < ∠B < ∠C

⟹ BC < AAC < AB [Side opposite to greater angle is larger and side opposite to smaller angle is smaller]

AB is longest and BC is smallest or shortest side.

 

Leave a comment