In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=135^{\circ}$. Prove that $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+4$ ar $(\triangle \mathrm{ABC})$
We have the following figure.
Here $\triangle A D B$ is a right triangle right angled at $D$. Therefore by Pythagoras theorem we have
$A B^{2}=A D^{2}+D B^{2}$
Again $\triangle A D C$ is a right triangle right angled at $D$.
Therefore, by Pythagoras theorem, we have
$A C^{2}=A D^{2}+D C^{2}$
$A C^{2}=A D^{2}+(D B+B C)^{2}$
$A C^{2}=A D^{2}+D B^{2}+B C^{2}+2 . B C . B D$
Since angle $A B D$ is $45^{\circ}$ and therefore angle $B A D$ is also $45^{\circ}$.
Hence AB = DB
So,
$A C^{2}=A D^{2}+D B^{2}+B C^{2}+2 B C \times A D$
$=A D^{2}+D B^{2}+B C^{2}+2 \times 2 \times \frac{1}{2} B C \times A D$
$=A D^{2}+D B^{2}+B C^{2}+4 a r(\Delta A B C)$
Since $A B^{2}=A D^{2}+D B^{2}$
So,
$A C^{2}=A B^{2}+B C^{2}+4 \operatorname{ar}(\triangle A B C)$
Hence we have proved that $A C^{2}=A B^{2}+B C^{2}+4 a r(\triangle A B C)$