In a triangle, the sides are given as 11 cm, 12 cm and 13 cm. The length of the altitude is 10.25 cm corresponding to the side having 12 cm.
True
Since the sides of a triangle are $a=11 \mathrm{~cm}, b=12 \mathrm{~cm}$ and $c=13 \mathrm{~cm}$.
Now, semi-perimeter, $\quad s=\frac{a+b+c}{2}$
$=\frac{11+12+13}{2}=\frac{36}{2}=18 \mathrm{~cm}$
Area of a triangle $=\sqrt{s(s-a)(s-b)(s-c)}$ [by Heron's formula]
$=\sqrt{18(18-11)(18-12)(18-13)}$
$=\sqrt{18 \times 7 \times 6 \times 5}$
$=\sqrt{3 \times 6 \times 7 \times 6 \times 5}$
$=6 \sqrt{3 \times 7 \times 5}$
$=6 \sqrt{105}=6 \times 10.25$
$=61.5 \mathrm{~cm}^{2}$
$\therefore \quad$ Area of $\triangle A B C=\frac{1}{2} \times B C \times A D \quad\left[\because\right.$ area of triangle $=\frac{1}{2}$ (base $\times$ height) $]$
$=\frac{1}{2} \times 12 \times 10.25=6 \times 10.25=61.5 \mathrm{~cm}^{2}$