In a survey of 100 persons it was found that 28 read magazine A, 30 read magazine B, 42 read magazine C, 8 read magazines A and B, 10 read magazines A and C, 5 read magazines B and C and 3 read all the three magazines. Find:
(i) How many read none of three magazines?
(ii) How many read magazine C only?
Let A, B C be the sets of the persons who read magazines A, B and C, respectively. Also, let U denote the universal set.
We have: n(U) = 100
$n(\mathrm{~A})=28, n(\mathrm{~B})=30, n(\mathrm{C})=42, n(\mathrm{~A} \cap \mathrm{B})=8, n(\mathrm{~A} \cap \mathrm{C})=10, n(\mathrm{~B} \cap \mathrm{C})=5$ and $n(\mathrm{~A} \cap \mathrm{B} \cap \mathrm{C})=3$
Now,
Number of persons who read none of the three magazines $=n\left(\mathrm{~A}^{\prime} \cap \mathrm{B}^{\prime} \cap \mathrm{C}^{\prime}\right)$
$=n(\mathrm{~A} \cup \mathrm{B} \cup \mathrm{C})^{\prime}$
$=n(\cup)-n(\mathrm{~A} \cup \mathrm{B} \cup \mathrm{C})$
$=n(\mathrm{U})-\{n(\mathrm{~A})+n(\mathrm{~B})+n(\mathrm{C})-n(\mathrm{~A} \cap \mathrm{B})-n(\mathrm{~A} \cap \mathrm{C})-n(\mathrm{~B} \cap \mathrm{C})+n(\mathrm{~A} \cap \mathrm{B} \cap \mathrm{C})\}$
$=100-(28+30+42-8-10-5+3)$
$=20$
Number of students who read magazine $C$ only $=n\left(C \cap A^{\prime} \cap B^{\prime}\right)$
$=n\left\{C \cap(A \cup B)^{\prime}\right\}$
$=n(\mathrm{C})-n\{\mathrm{C} \cap(\mathrm{A} \cup \mathrm{B})\}$
$=n(\mathrm{C})-n\{(\mathrm{C} \cap \mathrm{A}) \cup(\mathrm{C} \cap \mathrm{B})\}$
$=n(\mathrm{C})-n\{(\mathrm{C} \cap \mathrm{A})+(\mathrm{C} \cap \mathrm{B})-(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})\}$
$=42-(10+5-3)$
$=30$