In a right triangle $A B C$, right angled at $C$, if $\angle B=60^{\circ}$ and $A B=15$ units. Find the remaining angles and sides.
We are given the following triangle with related information
It is required to find $\angle A, \angle C$ and length of sides $A C$ and $B C$
$\triangle A B C$ is right angled at $C$
Therefore,
$\angle C=90^{\circ}$
Now we know that sum of all the angles of any triangle is $180^{\circ}$
Therefore,
$\angle A+\angle B+\angle C=180^{\circ}$.....(1)
Now by substituting the values of known angles $\angle B$ and $\angle C$ in equation (1)
We get,
$\angle A+60^{\circ}+90^{\circ}=180^{\circ}$
Therefore,
$\angle A+150^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle A=180^{\circ}-150^{\circ}$
$\Rightarrow \quad \angle A=30^{\circ}$
Therefore,
$\angle A=30^{\circ}$
Now,
We know that,
$\cos B=\cos 60^{\circ}$
$\Rightarrow \quad \frac{B C}{A B}=\cos 60^{\circ}$....(2)
Now we have,
$A B=15$ units and $\cos 60^{\circ}=\frac{1}{2}$
Therefore by substituting above values in equation (2)
We get,
$\cos B=\cos 60^{\circ}$
$\Rightarrow \quad \frac{B C}{A B}=\cos 60^{\circ}$
$\Rightarrow \frac{B C}{15}=\frac{1}{2}$
Now by cross multiplying we get,
$\frac{B C}{15}=\frac{1}{2}$
$\Rightarrow 2 \times B C=15 \times 1$
$\Rightarrow \quad B C=\frac{15}{2}$
$\Rightarrow \quad B C=7.5$
Therefore,
$B C=7.5$ units.....(3)
Now,
We know that,
$\sin B=\sin 60^{\circ}$
$\Rightarrow \frac{A C}{A B}=\sin 60^{\circ}$........(4)
Now we have,
$A B=15$ units and $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
Therefore by substituting above values in equation (4)
We get,
$\sin B=\sin 60^{\circ}$
$\Rightarrow \frac{A C}{A B}=\sin 60^{\circ}$
$\Rightarrow \frac{A C}{15}=\frac{\sqrt{3}}{2}$
Now by cross multiplying we get,
$\frac{A C}{15}=\frac{\sqrt{3}}{2}$
$\Rightarrow 2 \times A C=\sqrt{3} \times 15$
$\Rightarrow \quad A C=\frac{\sqrt{3} \times 15}{2}$
$\Rightarrow \quad A C=\frac{15}{2} \sqrt{3}$
Therefore,
$A C=\frac{15}{2} \sqrt{3}$ units
Hence,
$\angle A=30^{\circ}$
$B C=7.5$ units
$A C=\frac{15}{2} \sqrt{3}$ units