Question:
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
Solution:
Let, $\angle B=90^{\circ}$
$\therefore A+C=90^{\circ}=\frac{\pi}{2}$
$\Rightarrow C=\frac{\pi}{2}-A$
$\Rightarrow \sin C=\sin \left(\frac{\pi}{2}-A\right)$
$\Rightarrow \sin C=\cos A \ldots(\mathrm{i})$
Now,
$\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=\sin ^{2} A+1+\sin ^{2} C \quad\left(\because \sin B=\sin 90^{\circ}=1\right)$
$=\sin ^{2} A+\cos ^{2} A+1 \quad[$ Using $(\mathrm{i})]$
$=1+1$
$=2$