In a rhombus ABCD, the altitude from D to the side AB bisects AB. Find the angles of the rhombus.
Given: $A B C D$ is a rhombus, $D E$ is altitude which bisects $A B$ i.e. $A E=E B$
In $\Delta A E D$ and $\Delta B E D$,
$D E=D E$ (Common side)
$\angle D E A=\angle D E B=90^{\circ}$ (Given)
$A E=E B$ (Given)
$\therefore \Delta A E D \cong \Delta B E D$ (By SAS congruence Criteria)
$\Rightarrow A D=B D$ (CPCT)
Also, $A D=A B$ (Sides of rhombus are equal)
$\Rightarrow A D=A B=B D$
Thus, $\Delta A B D$ is an equilateral triangle.
Therefore, $\angle A=60^{\circ}$
$\Rightarrow \angle C=\angle A=60^{\circ}$ (Opposite angles of rhombus are equal)
And, $\angle A B C+\angle B C D=180^{\circ}$ (Adjacent angles of rhombus are supplementary.)
$\Rightarrow \angle A B C+60^{\circ}=180^{\circ}$
$\Rightarrow \angle A B C=180^{\circ}-60^{\circ}$
$\Rightarrow \angle A B C=120^{\circ}$
$\Rightarrow \angle A D C=\angle A B C=120^{\circ}$
Hence, the angles of rhombus are $60^{\circ}, 120^{\circ}, 60^{\circ}$ and $120^{\circ}$.