In a rectangle $A B C D, A B=20 \mathrm{~cm}, \angle B A C=60^{\circ}$, calculate side $B C$ and diagonals $A C$ and $B D$.
We have drawn the following figure
Since ABCD is a rectangle
Therefore,
$\angle A B C=\angle B C D=90^{\circ}$
Now, consider $\triangle A B C$
We know that sum of all the angles of any triangle is
Therefore,
$\angle B A C+\angle A B C+\angle A C B=180^{\circ}$.....(1)
Now by substituting the values of known angles $\angle B A C$ and $\angle A B C$ in equation (1)
We get,
$60^{\circ}+90^{\circ}+\angle A C B=180^{\circ}$
$\Rightarrow 150^{\circ}+\angle A C B=180^{\circ}$
$\Rightarrow \quad \angle A C B=180^{\circ}-150^{\circ}$
$\Rightarrow \quad \angle A C B=30^{\circ}$
Now in $\triangle A B C$
We know that,
$\cos A=\cos 60^{\circ}$
$\Rightarrow \frac{A B}{A C}=\cos 60^{\circ}$.......(2)
Now we have,
$A B=20 \mathrm{~cm}$ and $\cos 60^{\circ}=\frac{1}{2}$
Therefore by substituting above values in equation (2)
We get,
$\cos A=\cos 60^{\circ}$
$\Rightarrow \frac{20}{A C}=\frac{1}{2}$
Now by cross multiplying we get,
$20 \times 2=1 \times A C$
$\Rightarrow 40=A C$
$\Rightarrow A C=40$
Therefore,
$A C=40 \mathrm{~cm}$....(3)
Now in $\triangle A B C$
We know that,
$\sin A=\sin 60^{\circ}$
$\Rightarrow \frac{B C}{A C}=\sin 60^{\circ}$....(4)
Now we have from equation (3),
$A C=40 \mathrm{~cm}$ and $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
Therefore by substituting above values in equation (4)
We get,
$\sin A=\sin 60^{\circ}$
$\Rightarrow \frac{B C}{40}=\frac{\sqrt{3}}{2}$
Now by cross multiplying we get,
$B C \times 2=\sqrt{3} \times 40$
$\Rightarrow B C=\frac{\sqrt{3} \times 40}{2}$
$\Rightarrow B C=20 \sqrt{3}$
Therefore,
$B C=20 \sqrt{3} \mathrm{~m}$....(5)
Since ABCD is a rectangle
Therefore,
$A B=C D=20 \mathrm{~cm} \ldots .(6)$
And
$B C=A D=20 \sqrt{3} \mathrm{~cm} \ldots \ldots(7)$
Now in $\triangle B C D$
We know that,
$\tan B=\frac{C D}{B C}$
Now by substituting the values of sides from equation (6) and (7)
We get,
$\Rightarrow \tan B=\frac{20}{20 \sqrt{3}}$
$\Rightarrow \tan B=\frac{1}{\sqrt{3}}$
Since
$\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
Therefore, $\angle B=30^{\circ}$
That is in $\triangle B C D$
$\angle D B C=30^{\circ}$....(8)
Now in $\triangle B C D$
We know that,
$\cos B=\frac{B C}{B D}$
From equation (7)and (8)
$\Rightarrow \cos 30^{\circ}=\frac{20 \sqrt{3}}{B D}$
Since
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
Therefore,
$\frac{\sqrt{3}}{2}=\frac{20 \sqrt{3}}{B D}$
Now by cross multiplying we get,
$\sqrt{3} \times B D=20 \sqrt{3} \times 2$
$\Rightarrow \sqrt{3} \times B D=40 \sqrt{3}$
$\Rightarrow \quad B D=\frac{40 \sqrt{3}}{\sqrt{3}}$
$\Rightarrow \quad B D=40$
Therefore,
$B D=40 \mathrm{~cm} \quad \ldots . .(9)$
Hence from equation (3), (5) and (9)
$A C=40 \mathrm{~cm}, B C=20 \sqrt{3} \mathrm{~cm}, B D=40 \mathrm{~cm}$