In a quadrilateral ΔBCD, ∠A+ ∠D = 90°. Prove that
AC2 + BD2 = AD2 + BC2.
Given Quadrilateral ΔBCD, in which ∠A+ ∠D = 90°
To prove AC2 + BD2 = AD2 + BC2
Construct Produce AB and CD to meet at E.
Also, join $A C$ and $B D$.
Proof In $\triangle A E D, \quad \angle A+\angle D=90^{\circ}$ [given]
$\therefore$ $\angle E=180^{\circ}-(\angle A+\angle D)=90^{\circ}$
Then, by Pythagoras theorem, $\quad A D^{2}=A E^{2}+D E^{2}$
In $\triangle B E C$, by Pythagoras theorem, $B C^{2}=B E^{2}+E F^{2}$
On adding both equations, we get
$A D^{2}+B C^{2}=A E^{2}+D E^{2}+B E^{2}+C E^{2}$ ...(i)
In $\triangle A E C$, by Pythagoras theorem,
$A C^{2}=A E^{2}+C E^{2}$
and in $\triangle B E D$, by Pythagoras theorem,
$B D^{2}=B E^{2}+D E^{2}$
On adding both equations, we get
$A C^{2}+B D^{2}=A E^{2}+C E^{2}+B E^{2}+D E^{2}$ ......(ii)
From Eqs. (i) and (ii),
$A C^{2}+B D^{2}=A D^{2}+B C^{2}$
Hence proved.