Question:
In a quadrilateral ABCD, show that (AB + BC + CD + DA) > (AC + BD).
Solution:
Given: Quadrilateral ABCD
To prove: (AB + BC + CD + DA) > (AC + BD)
Proof:
In $\Delta A B C$,
$A B+B C>A C \quad \ldots$ (i)
In $\triangle C A D$,
$C D+A D>A C \quad \ldots$ (ii)
In $\Delta B A D$,
$A B+A D>B D \quad \ldots$ (iii)
In $\Delta B C D$
$B C+C D>B D \quad \ldots$ (iv)
Adding (i), (ii), (iii) and (iv), we get
2(AB + BC + CD + DA) < 2( AC + BD)
Hence, (AB + BC + CD + DA) < (AC + BD).