In a ΔPQR, PR2 – PQ2 = QR2 and M is a point on side PR such that QM ⊥ PR.
Prove that QM2 =PM × MR.
Given In A PQR, PR2 – PQ2 = QR2 and QM ⊥ PR
To prove QM2 = PM x MR
Proof Since, PR2 – PQ2 = QR2
⇒ PR2 = PQ2 + QR2
So, $\triangle P Q R$ is right angled triangle at $Q$.
In $\Delta Q M R$ and $\Delta P M Q$, $\angle M=\angle M$ [each 90°]
$\angle M Q R=\angle Q P M \quad$ [each equal to $90^{\circ}-\angle R$ ]
$\therefore$ $\Delta Q M R \sim \Delta P M Q$ [by AAA similarity criterion]
Now, using property of area of similar triangles, we get
$\frac{\operatorname{ar}(\Delta Q M R)}{\operatorname{ar}(\Delta P M Q)}=\frac{(Q M)^{2}}{(P M)^{2}}$
$\Rightarrow \quad \frac{\frac{1}{2} \times R M \times Q M}{\frac{1}{2} \times P M \times Q M}=\frac{(Q M)^{2}}{(P M)^{2}} \quad\left[\because\right.$ area of triangle $=\frac{1}{2} \times$ base $\times$ height $]$
$\Rightarrow$ $Q M^{2}=P M \times R M$
Hence proved.