Question:
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
Solution:
Let $a$ be the first term and $r$ be the common ratio.
$\therefore a_{3}=24$ and $a_{6}=192$
$\Rightarrow a r^{2}=24$ and $a r^{5}=192$
$\Rightarrow \frac{a r^{5}}{a r^{2}}=\frac{192}{24}$
$\Rightarrow r^{3}=8$
$\Rightarrow r^{3}=2^{3}$
$\Rightarrow r=2$
Putting $r=2$ in $a r^{2}=24$
$a(2)^{2}=24$
$\Rightarrow a=6$
Now, $10^{\text {th }}$ term $=a_{10}=a r^{9}$
Putting $a=6$ and $r=2$ in $a_{10}=a r^{9}$
$\Rightarrow a_{10}=(6)(2)^{9}=3072$
Thus, the $10^{\text {th }}$ term of the G.P. is 3072 .